Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Malar J ; 23(1): 104, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609964

RESUMEN

BACKGROUND: While Plasmodium falciparum and Plasmodium vivax cause the majority of malaria cases and deaths, infection by Plasmodium malariae and other Plasmodium species also causes morbidity and mortality. Current understanding of these infections is limited in part by existing point-of-care diagnostics that fail to differentiate them and have poor sensitivity for low-density infections. Accurate diagnosis currently requires molecular assays performed in well-resourced laboratories. This report describes the development of a P. malariae diagnostic assay that uses rapid, isothermal recombinase polymerase amplification (RPA) and lateral-flow-strip detection. METHODS: Multiple combinations of custom RPA primers and probes were designed using publicly available P. malariae genomic sequences, and by modifying published primer sets. Based on manufacturer RPA reaction conditions (TwistDx nfo kit), an isothermal assay was optimized targeting the multicopy P. malariae 18S rRNA gene with 39 °C incubation and 30-min run time. RPA product was visualized using lateral strips (FAM-labeled, biotinylated amplicon detected by a sandwich immunoassay, visualized using gold nanoparticles). Analytical sensitivity was evaluated using 18S rRNA plasmid DNA, and clinical sensitivity determined using qPCR-confirmed samples collected from Tanzania, Ethiopia, and the Democratic Republic of the Congo. RESULTS: Using 18S rRNA plasmid DNA, the assay demonstrates a detection limit of 10 copies/µL (~ 1.7 genome equivalents) and 100% analytical specificity. Testing in field samples showed 95% clinical sensitivity and 88% specificity compared to qPCR. Total assay time was less than 40 min. CONCLUSION: Combined with simplified DNA extraction methods, the assay has potential for future field-deployable, point-of-care use to detect P. malariae infection, which remains largely undiagnosed but a neglected cause of chronic malaria. The assay provides a rapid, simple readout on a lateral flow strip without the need for expensive laboratory equipment.


Asunto(s)
Oro , Nanopartículas del Metal , ARN Ribosómico 18S/genética , Bioensayo , ADN
2.
Am J Trop Med Hyg ; 110(5): 887-891, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38507797

RESUMEN

As part of malaria nationwide monitoring and evaluation initiatives, there is an increasing trend of incorporating malaria rapid diagnostic tests (mRDTs) in surveys conducted within primary schools to detect malaria parasites. However, mRDTs based on the detection of histidine-rich protein 2 (HRP2) are known to yield false-positive results due to persistent antigenemia, and false-negative results may result from low parasitemia or Plasmodium falciparum hrp2/3 gene deletion. We evaluated diagnostic performance of an HRP2 and pan-parasite lactate dehydrogenase (HRP2/pLDH) mRDT against polymerase chain reaction (PCR) for detection of P. falciparum among 17,051 primary school-age children from eight regions of Tanzania in 2017. According to PCR, the prevalence of P. falciparum was 19.2% (95% CI: 18.6-19.8). Using PCR as reference, the sensitivity and specificity of mRDT was 76.2% (95% CI: 74.7-77.7) and 93.9% (95% CI: 93.5-94.3), respectively. Test agreement was lowest in low transmission areas, where true-positive mRDTs were outnumbered by false-negatives due to low parasitemia. Discordant samples (mRDT-negative but PCR-positive) were screened for pfhrp2/3 deletion by real-time PCR. Among those with a parasite density sufficient for analysis, pfhrp2 deletion was confirmed in 60 samples, whereas pfhrp3 deletion was confirmed in two samples; one sample had both pfhrp2 and pfhrp3 deletions. The majority of samples with gene deletions were detected in the high-transmission Kagera region. Compared with mRDTs, PCR and other molecular methods offer increased sensitivity and are not affected by pfhrp2/3 deletions, making them a useful supplement to mRDTs in schools and other epidemiological surveys.


Asunto(s)
Antígenos de Protozoos , Pruebas Diagnósticas de Rutina , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Sensibilidad y Especificidad , Tanzanía/epidemiología , Humanos , Antígenos de Protozoos/genética , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Proteínas Protozoarias/genética , Niño , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Pruebas Diagnósticas de Rutina/métodos , Eliminación de Gen , Femenino , Masculino , Instituciones Académicas , Reacción en Cadena de la Polimerasa/métodos , Prevalencia , Prueba de Diagnóstico Rápido
3.
medRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36865135

RESUMEN

The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania, and continued local transmission. To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo District on the coastal mainland from 2016-2018. Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Our data support importation as a main source of genetic diversity and contribution to the parasite population on Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive for malaria reemergence due to susceptible hosts and competent vectors.

4.
J Infect Dis ; 229(4): 969-978, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37713614

RESUMEN

BACKGROUND: People with suspected malaria may harbor Plasmodium falciparum undetected by rapid diagnostic test (RDT). The impact of these subpatent infections on the risk of developing clinical malaria is not fully understood. METHODS: We analyzed subpatent P. falciparum infections using a longitudinal cohort in a high-transmission site in Kenya. Weighted Kaplan-Meier models estimated the risk difference (RD) for clinical malaria during the 60 days following a symptomatic subpatent infection. Stratum-specific estimates by age and transmission season assessed modification. RESULTS: Over 54 months, we observed 1128 symptomatic RDT-negative suspected malaria episodes, of which 400 (35.5%) harbored subpatent P. falciparum. Overall, the 60-day risk of developing clinical malaria was low following all episodes (8.6% [95% confidence interval, 6.7%-10.4%]). In the low-transmission season, the risk of clinical malaria was slightly higher in those with subpatent infection, whereas the opposite was true in the high-transmission season (low-transmission season RD, 2.3% [95% confidence interval, .4%-4.2%]; high-transmission season RD, -4.8% [-9.5% to -.05%]). CONCLUSIONS: The risk of developing clinical malaria among people with undetected subpatent infections is low. A slightly elevated risk in the low-transmission season may merit alternate management, but RDTs identify clinically relevant infections in the high-transmission season.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Plasmodium falciparum , Kenia/epidemiología , Riesgo , Pruebas Diagnósticas de Rutina/métodos , Prevalencia
5.
PLoS Negl Trop Dis ; 17(12): e0011274, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38064489

RESUMEN

Plasmodium ovale curtisi (Poc) and Plasmodium ovale wallikeri (Pow) represent distinct non-recombining Plasmodium species that are increasing in prevalence in sub-Saharan Africa. Though they circulate sympatrically, co-infection within human and mosquito hosts has rarely been described. Separate 18S rRNA real-time PCR assays that detect Poc and Pow were modified to allow species determination in parallel under identical cycling conditions. The lower limit of detection was 0.6 plasmid copies/µL (95% CI 0.4-1.6) for Poc and 4.5 plasmid copies/µL (95% CI 2.7-18) for Pow, or 0.1 and 0.8 parasites/µL, respectively, assuming 6 copies of 18s rRNA per genome. However, the assays showed cross-reactivity at concentrations greater than 103 plasmid copies/µL (roughly 200 parasites/µL). Mock mixtures were used to establish criteria for classifying mixed Poc/Pow infections that prevented false-positive detection while maintaining sensitive detection of the minority ovale species down to 100 copies/µL (<1 parasite/µL). When the modified real-time PCR assays were applied to field-collected blood samples from Tanzania and Cameroon, species identification by real-time PCR was concordant with nested PCR in 19 samples, but additionally detected two mixed Poc/Pow infections where nested PCR detected a single Po species. When real-time PCR was applied to oocyst-positive Anopheles midguts saved from mosquitoes fed on P. ovale-infected persons, mixed Poc/Pow infections were detected in 11/14 (79%). Based on these results, 8/9 P. ovale carriers transmitted both P. ovale species to mosquitoes, though both Po species could only be detected in the blood of two carriers. The described real-time PCR approach can be used to identify the natural occurrence of mixed Poc/Pow infections in human and mosquito hosts and reveals that such co-infections and co-transmission are likely more common than appreciated.


Asunto(s)
Anopheles , Malaria , Plasmodium ovale , Animales , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Plasmodium ovale/genética , ARN Ribosómico 18S/genética , Técnicas de Amplificación de Ácido Nucleico , Anopheles/genética , Malaria/diagnóstico , Malaria/epidemiología
6.
medRxiv ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37961397

RESUMEN

Background: P. ovale spp. infections are endemic across multiple African countries and are caused by two distinct non-recombining species, P. ovale curtisi (Poc) and P. ovale wallikeri (Pow). These species are thought to differ in clinical symptomatology and latency, but existing diagnostic assays have limited ability to detect and distinguish them. In this study, we developed a new duplex assay for the detection and differentiation of Poc and Pow that can be used to improve our understanding of these parasites. Methods: Repetitive sequence motifs were identified in available Poc and Pow genomes and used for assay development and validation. We evaluated the analytical sensitivity and specificity of the best-performing assay using a panel of samples from Tanzania and the Democratic Republic of the Congo (DRC), then validated its performance using 55 P. ovale spp. samples and 40 non-ovale Plasmodium samples from the DRC. Poc and Pow prevalence among symptomatic individuals sampled across three provinces of the DRC were estimated. Results: The best-performing Poc and Pow targets had 9 and 8 copies within the reference genomes, respectively. Our duplex assay had 100% specificity and 95% confidence lower limits of detection of 4.2 and 41.2 parasite genome equivalents/µl for Poc and Pow, respectively. Species was determined in 80% of all P. ovale spp.-positive field samples and 100% of those with >10 parasites/µl. Most P. ovale spp. field samples from the DRC were found to be Poc infections. Conclusions: We identified promising multi-copy targets for molecular detection and differentiation of Poc and Pow and used them to develop a new duplex real-time PCR assay that performed well when applied to diverse field samples. Though low-density Pow infections are not reliably detected, the assay is highly specific and can be used for high-throughput studies of P. ovale spp. epidemiology among symptomatic cases in malaria-endemic countries like the DRC.

7.
Nat Commun ; 14(1): 6618, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857597

RESUMEN

Reports suggest non-falciparum species are an underappreciated cause of malaria in sub-Saharan Africa but their epidemiology is ill-defined, particularly in highly malaria-endemic regions. We estimated incidence and prevalence of PCR-confirmed non-falciparum and Plasmodium falciparum malaria infections within a longitudinal study conducted in Kinshasa, Democratic Republic of Congo (DRC) between 2015-2017. Children and adults were sampled at biannual household surveys and routine clinic visits. Among 9,089 samples from 1,565 participants, incidences of P. malariae, P. ovale spp., and P. falciparum infections by 1-year were 7.8% (95% CI: 6.4%-9.1%), 4.8% (95% CI: 3.7%-5.9%) and 57.5% (95% CI: 54.4%-60.5%), respectively. Non-falciparum prevalences were higher in school-age children, rural and peri-urban sites, and P. falciparum co-infections. P. falciparum remains the primary driver of malaria in the DRC, though non-falciparum species also pose an infection risk. As P. falciparum interventions gain traction in high-burden settings, continued surveillance and improved understanding of non-falciparum infections are warranted.


Asunto(s)
Malaria Falciparum , Malaria , Plasmodium ovale , Niño , Adulto , Humanos , Plasmodium ovale/genética , Plasmodium malariae , República Democrática del Congo/epidemiología , Estudios Longitudinales , Malaria Falciparum/epidemiología , Malaria/epidemiología , Prevalencia , Plasmodium falciparum/genética
8.
medRxiv ; 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37790376

RESUMEN

Background: Increasing reports suggest that non-falciparum species are an underappreciated cause of malaria in sub-Saharan Africa, but their epidemiology is not well-defined. This is particularly true in regions of high P. falciparum endemicity such as the Democratic Republic of Congo (DRC), where 12% of the world's malaria cases and 13% of deaths occur. Methods and Findings: The cumulative incidence and prevalence of P. malariae and P. ovale spp. infection detected by real-time PCR were estimated among children and adults within a longitudinal study conducted in seven rural, peri-urban, and urban sites from 2015-2017 in Kinshasa Province, DRC. Participants were sampled at biannual household survey visits (asymptomatic) and during routine health facility visits (symptomatic). Participant-level characteristics associated with non-falciparum infections were estimated for single- and mixed-species infections. Among 9,089 samples collected from 1,565 participants over a 3-year period, the incidence of P. malariae and P. ovale spp. infection was 11% (95% CI: 9%-12%) and 7% (95% CI: 5%-8%) by one year, respectively, compared to a 67% (95% CI: 64%-70%) one-year cumulative incidence of P. falciparum infection. Incidence continued to rise in the second year of follow-up, reaching 26% and 15% in school-age children (5-14yo) for P. malariae and P. ovale spp., respectively. Prevalence of P. malariae, P. ovale spp., and P. falciparum infections during household visits were 3% (95% CI: 3%-4%), 1% (95% CI: 1%-2%), and 35% (95% CI: 33%-36%), respectively. Non-falciparum malaria was more prevalent in rural and peri-urban vs. urban sites, in school-age children, and among those with P. falciparum co-infection. A crude association was detected between P. malariae and any anemia in the symptomatic clinic population, although this association did not hold when stratified by anemia severity. No crude associations were detected between non-falciparum infection and fever prevalence. Conclusions: P. falciparum remains the primary driver of malaria morbidity and mortality in the DRC. However, non-falciparum species also pose an infection risk across sites of varying urbanicity and malaria endemicity within Kinshasa, DRC, particularly among children under 15 years of age. As P. falciparum interventions gain traction in high-burden settings like the DRC, continued surveillance and improved understanding of non-falciparum infections are warranted.

9.
medRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37790493

RESUMEN

P. malariae is found worldwide and causes chronic parasitism in its human hosts. We developed a P. malariae (Pm) diagnostic assay that uses rapid, isothermal recombinase polymerase amplification (RPA) and lateral-flow-strip detection. Using 18S rRNA plasmid DNA, the assay demonstrates a detection limit of 10 copies /µL (~1.7 genome equivalents) and 100% analytical specificity. Testing in field samples showed 95% clinical sensitivity and 88% specificity compared to qPCR. Total assay time was 35 minutes. Combined with simplified DNA extraction methods, the assay has potential for future field-deployable point-of-care use to detect a parasite species that remains largely undiagnosed.

10.
medRxiv ; 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37732257

RESUMEN

Background: Asymptomatic malaria may be patent (visible by microscopy) and detectable by rapid malaria diagnostic tests (RDTs), or it may be submicroscopic and only detectable by polymerase chain reaction (PCR). Methods: To characterize the submicroscopic reservoir in an area of declining malaria transmission, asymptomatic persons >5 years of age in Bagamoyo District, Tanzania, were screened using RDT, microscopy, and PCR. We investigated the size of the submicroscopic reservoir across villages, determined factors associated with submicroscopic parasitemia, and assessed the natural history of submicroscopic malaria over four weeks. Results: Among 6,076 participants, Plasmodium falciparum prevalence by RDT, microscopy, and PCR was 9%, 9%, and 28%, respectively, with roughly two-thirds of PCR-positive individuals harboring submicroscopic infection. Adult status, female gender, dry season months, screened windows, and bednet use were associated with submicroscopic carriage. Among 15 villages encompassing 80% of participants, the proportion of submicroscopic carriers increased with decreasing village-level malaria prevalence. Over four weeks, 23% (61/266) of submicroscopic carriers became RDT-positive and were treated, with half exhibiting symptoms. This occurred more frequently in villages with higher malaria prevalence. Conclusions: Micro-heterogeneity in transmission impacts the size of the submicroscopic reservoir and the likelihood of submicroscopic carriers developing patent malaria in coastal Tanzania.

11.
Emerg Infect Dis ; 29(6): 1143-1153, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209670

RESUMEN

Achieving malaria elimination requires considering both Plasmodium falciparum and non-P. falciparum infections. We determined prevalence and geographic distribution of 4 Plasmodium spp. by performing PCR on dried blood spots collected within 8 regions of Tanzania during 2017. Among 3,456 schoolchildren, 22% had P. falciparum, 24% had P. ovale spp., 4% had P. malariae, and 0.3% had P. vivax infections. Most (91%) schoolchildren with P. ovale infections had low parasite densities; 64% of P. ovale infections were single-species infections, and 35% of those were detected in low malaria endemic regions. P. malariae infections were predominantly (73%) co-infections with P. falciparum. P. vivax was detected mostly in northern and eastern regions. Co-infections with >1 non-P. falciparum species occurred in 43% of P. falciparum infections. A high prevalence of P. ovale infections exists among schoolchildren in Tanzania, underscoring the need for detection and treatment strategies that target non-P. falciparum species.


Asunto(s)
Coinfección , Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Niño , Plasmodium falciparum/genética , Prevalencia , Tanzanía/epidemiología , Coinfección/epidemiología , Plasmodium malariae , Malaria/epidemiología , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malaria Vivax/parasitología
12.
bioRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034766

RESUMEN

Plasmodium ovale curtisi (Poc) and Plasmodium ovale wallikeri (Pow) represent distinct non-recombining malaria species that are increasing in prevalence in sub-Saharan Africa. Though they circulate sympatrically, co-infection within human and mosquito hosts has rarely been described. Separate 18S rRNA real-time PCR assays that detect Poc and Pow were modified to allow species determination in parallel under identical cycling conditions. The lower limit of detection was 0.6 plasmid copies/µL (95% CI 0.4-1.6) for Poc and 4.5 plasmid copies/µL (95% CI( 2.7- 18) for Pow, or 0.1 and 0.8 parasites/µL, respectively, assuming 6 copies of 18s rRNA per genome. However, the assays showed cross-reactivity at concentrations greater than 103 plasmid copies/µL (roughly 200 parasites/µL). Mock mixtures were used to establish criteria for classifying mixed Poc/Pow infections that prevented false-positive detection while maintaining sensitive detection of the minority ovale species down to 10° copies/µL (<1 parasite/µL). When the modified real-time PCR assays were applied to field-collected blood samples from Tanzania and Cameroon, species identification by real-time PCR was concordant with nested PCR, but additionally detected two mixed Poc/Pow infections where nested PCR detected a single Po species. When real-time PCR was applied to 14 oocyst-positive Anopheles midguts saved from mosquitoes fed on P. ovate-infected persons, mixed Poc/Pow infections were detected in 11 (79%). Based on these results, 8/9 P. ovate carriers transmitted both P. ovate species to mosquitoes, though both Po species could only be detected in the blood of two carriers. The described real-time PCR approach can be used to identify the natural occurrence of mixed Poc/Pow infections in human and mosquito hosts and reveals that such co-infections and co-transmission are likely more common than appreciated.

13.
JAMA ; 329(6): 482-489, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36701144

RESUMEN

Importance: Influenza virus infections declined globally during the COVID-19 pandemic. Loss of natural immunity from lower rates of influenza infection and documented antigenic changes in circulating viruses may have resulted in increased susceptibility to influenza virus infection during the 2021-2022 influenza season. Objective: To compare the risk of influenza virus infection among household contacts of patients with influenza during the 2021-2022 influenza season with risk of influenza virus infection among household contacts during influenza seasons before the COVID-19 pandemic in the US. Design, Setting, and Participants: This prospective study of influenza transmission enrolled households in 2 states before the COVID-19 pandemic (2017-2020) and in 4 US states during the 2021-2022 influenza season. Primary cases were individuals with the earliest laboratory-confirmed influenza A(H3N2) virus infection in a household. Household contacts were people living with the primary cases who self-collected nasal swabs daily for influenza molecular testing and completed symptom diaries daily for 5 to 10 days after enrollment. Exposures: Household contacts living with a primary case. Main Outcomes and Measures: Relative risk of laboratory-confirmed influenza A(H3N2) virus infection in household contacts during the 2021-2022 season compared with prepandemic seasons. Risk estimates were adjusted for age, vaccination status, frequency of interaction with the primary case, and household density. Subgroup analyses by age, vaccination status, and frequency of interaction with the primary case were also conducted. Results: During the prepandemic seasons, 152 primary cases (median age, 13 years; 3.9% Black; 52.0% female) and 353 household contacts (median age, 33 years; 2.8% Black; 54.1% female) were included and during the 2021-2022 influenza season, 84 primary cases (median age, 10 years; 13.1% Black; 52.4% female) and 186 household contacts (median age, 28.5 years; 14.0% Black; 63.4% female) were included in the analysis. During the prepandemic influenza seasons, 20.1% (71/353) of household contacts were infected with influenza A(H3N2) viruses compared with 50.0% (93/186) of household contacts in 2021-2022. The adjusted relative risk of A(H3N2) virus infection in 2021-2022 was 2.31 (95% CI, 1.86-2.86) compared with prepandemic seasons. Conclusions and Relevance: Among cohorts in 5 US states, there was a significantly increased risk of household transmission of influenza A(H3N2) in 2021-2022 compared with prepandemic seasons. Additional research is needed to understand reasons for this association.


Asunto(s)
COVID-19 , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , COVID-19/epidemiología , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Gripe Humana/transmisión , Pandemias/prevención & control , Pandemias/estadística & datos numéricos , Estudios Prospectivos , Estaciones del Año , Composición Familiar , Estados Unidos/epidemiología , Trazado de Contacto/estadística & datos numéricos , Autoevaluación
14.
Artículo en Inglés | MEDLINE | ID: mdl-38406213

RESUMEN

Introduction: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) transmission frequently occurs within households, yet few studies describe which household contacts and household units are most likely to engage in transmission-interrupting behaviors. Methods: We analyzed a COVID-19 prospective household transmission cohort in North Carolina (April to October 2020) to quantify changes in physical distancing behaviors among household contacts over 14 days. We evaluated which household contacts were most likely to ever mask at home and to ever share a bedroom with the index case between days 7-14. Results: In the presence of a household COVID-19 infection, 24% of household contacts reported ever masking at home during the week before study entry. Masking in the home between days 7-14 was reported by 26% of household contacts and was more likely for participants who observed their household index case wearing a mask. Participants of color and participants in high-density households were more likely to mask at home. After adjusting for race/ethnicity, living density was not as clearly associated with masking. Symptomatic household contacts were more likely to share a bedroom with the index case. Working individuals and those with comorbidities avoided sharing a bedroom with the index case. Discussion: In-home masking during household exposure to COVID-19 was infrequent in 2020. In light of the ongoing transmission of SARS-CoV-2, these findings underscore a need for health campaigns to increase the feasibility and social desirability of in-home masking among exposed household members. Joint messaging on social responsibility and prevention of breakthrough infections, reinfections, and long COVID-19 may help motivate transmission-interruption behaviors.

15.
medRxiv ; 2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36451883

RESUMEN

Background: SARS-CoV-2 transmission frequently occurs within households, yet few studies describe which household contacts and household units are most likely to engage in transmission-interrupting behaviors. Methods: We analyzed a COVID-19 prospective household transmission cohort in North Carolina (April-Oct 2020) to quantify changes in physical distancing behaviors among household contacts over 14 days. We evaluated which household contacts were most likely to ever mask at home and to ever share a bedroom with the index case between Days 7-14. Results: In the presence of a household COVID-19 infection, 24% of household contacts reported ever masking at home during the week before study entry. Masking in the home between Days 7-14 was reported by 26% of household contacts, and was more likely for participants who observed their household index case wearing a mask. Participants of color and participants in high-density households were more likely to mask at home. After adjusting for race/ethnicity, living density was not as clearly associated with masking. Symptomatic household contacts were more likely to share a bedroom with the index case. Working individuals and those with comorbidities avoided sharing a bedroom with the index case. Conclusion: In-home masking during household exposure to COVID-19 was infrequent in 2020. In light of ongoing transmission of SARS-CoV-2, these findings underscore a need for health campaigns to increase the feasibility and social desirability of in-home masking among exposed household members. Joint messaging on social responsibility and prevention of breakthrough infections, reinfections, and long COVID-19 may help motivate transmission-interruption behaviors.

16.
J Data Sci ; 20(1): 51-78, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35928784

RESUMEN

A standard competing risks set-up requires both time to event and cause of failure to be fully observable for all subjects. However, in application, the cause of failure may not always be observable, thus impeding the risk assessment. In some extreme cases, none of the causes of failure is observable. In the case of a recurrent episode of Plasmodium vivax malaria following treatment, the patient may have suffered a relapse from a previous infection or acquired a new infection from a mosquito bite. In this case, the time to relapse cannot be modeled when a competing risk, a new infection, is present. The efficacy of a treatment for preventing relapse from a previous infection may be underestimated when the true cause of infection cannot be classified. In this paper, we developed a novel method for classifying the latent cause of failure under a competing risks set-up, which uses not only time to event information but also transition likelihoods between covariates at the baseline and at the time of event occurrence. Our classifier shows superior performance under various scenarios in simulation experiments. The method was applied to Plasmodium vivax infection data to classify recurrent infections of malaria.

17.
Stat Med ; 41(23): 4697-4715, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35908812

RESUMEN

When an infectious disease recurs, it may be due to treatment failure or a new infection. Being able to distinguish and classify these two different outcomes is critical in effective disease control. A multi-state model based on Markov processes is a typical approach to estimating the transition probability between the disease states. However, it can perform poorly when the disease state is unknown. This article aims to demonstrate that the transition likelihoods of baseline covariates can distinguish one cause from another with high accuracy in infectious diseases such as malaria. A more general model for disease progression can be constructed to allow for additional disease outcomes. We start from a multinomial logit model to estimate the disease transition probabilities and then utilize the baseline covariate's transition information to provide a more accurate classification result. We apply the expectation-maximization (EM) algorithm to estimate unknown parameters, including the marginal probabilities of disease outcomes. A simulation study comparing our classifier to the existing two-stage method shows that our classifier has better accuracy, especially when the sample size is small. The proposed method is applied to determining relapse vs reinfection outcomes in two Plasmodium vivax treatment studies from Cambodia that used different genotyping approaches to demonstrate its practical use.


Asunto(s)
Algoritmos , Motivación , Humanos , Cadenas de Markov , Probabilidad , Recurrencia
18.
PLoS Negl Trop Dis ; 16(7): e0010648, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35867730

RESUMEN

Genotyping Plasmodium vivax relapses can provide insights into hypnozoite biology. We performed targeted amplicon sequencing of 127 relapses occurring in Indonesian soldiers returning to malaria-free Java after yearlong deployment in malarious Eastern Indonesia. Hepatic carriage of multiple hypnozoite clones was evident in three-quarters of soldiers with two successive relapses, yet the majority of relapse episodes only displayed one clonal population. The number of clones detected in relapse episodes decreased over time and through successive relapses, especially in individuals who received hypnozoiticidal therapy. Interrogating the multiplicity of infection in this P. vivax relapse cohort reveals evidence of independent activation and slow depletion of hypnozoites over many months by multiple possible mechanisms, including parasite senescence and host immunity.


Asunto(s)
Antimaláricos , Malaria Vivax , Malaria , Parásitos , Animales , Antimaláricos/uso terapéutico , Humanos , Malaria/parasitología , Malaria Vivax/parasitología , Plasmodium vivax/genética , Recurrencia
19.
Parasit Vectors ; 15(1): 56, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164867

RESUMEN

BACKGROUND: Plasmodium ovale is a neglected malarial parasite that can form latent hypnozoites in the human liver. Over the last decade, molecular surveillance studies of non-falciparum malaria in Africa have highlighted that P. ovale is circulating below the radar, including areas where Plasmodium falciparum is in decline. To eliminate malaria where P. ovale is endemic, a better understanding of its epidemiology, asymptomatic carriage, and transmission biology is needed. METHODS: We performed a pilot study on P. ovale transmission as part of an ongoing study of human-to-mosquito transmission of P. falciparum from asymptomatic carriers. To characterize the malaria asymptomatic reservoir, cross-sectional qPCR surveys were conducted in Bagamoyo, Tanzania, over three transmission seasons. Positive individuals were enrolled in transmission studies of P. falciparum using direct skin feeding assays (DFAs) with Anopheles gambiae s.s. (IFAKARA strain) mosquitoes. For a subset of participants who screened positive for P. ovale on the day of DFA, we incubated blood-fed mosquitoes for 14 days to assess sporozoite development. RESULTS: Molecular surveillance of asymptomatic individuals revealed a P. ovale prevalence of 11% (300/2718), compared to 29% (780/2718) for P. falciparum. Prevalence for P. ovale was highest at the beginning of the long rainy season (15.5%, 128/826) in contrast to P. falciparum, which peaked later in both the long and short rainy seasons. Considering that these early-season P. ovale infections were low-density mono-infections (127/128), we speculate many were due to hypnozoite-induced relapse. Six of eight P. ovale-infected asymptomatic individuals who underwent DFAs successfully transmitted P. ovale parasites to A. gambiae. CONCLUSIONS: Plasmodium ovale is circulating at 4-15% prevalence among asymptomatic individuals in coastal Tanzania, largely invisible to field diagnostics. A different seasonal peak from co-endemic P. falciparum, the capacity to relapse, and efficient transmission to Anopheles vectors likely contribute to its persistence amid control efforts focused on P. falciparum.


Asunto(s)
Anopheles , Malaria Falciparum , Plasmodium ovale , Animales , Estudios Transversales , Humanos , Malaria Falciparum/epidemiología , Mosquitos Vectores , Proyectos Piloto , Plasmodium falciparum , Plasmodium ovale/genética , Prevalencia , Tanzanía/epidemiología
20.
Clin Infect Dis ; 74(10): 1776-1785, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34383889

RESUMEN

BACKGROUND: Households are hot spots for severe acute respiratory syndrome coronavirus 2 transmission. METHODS: This prospective study enrolled 100 coronavirus disease 2019 (COVID-19) cases and 208 of their household members in North Carolina though October 2020, including 44% who identified as Hispanic or non-White. Households were enrolled a median of 6 days from symptom onset in the index case. Incident secondary cases within the household were detected using quantitative polymerase chain reaction of weekly nasal swabs (days 7, 14, 21) or by seroconversion at day 28. RESULTS: Excluding 73 household contacts who were PCR-positive at baseline, the secondary attack rate (SAR) among household contacts was 32% (33 of 103; 95% confidence interval [CI], 22%-44%). The majority of cases occurred by day 7, with later cases confirmed as household-acquired by viral sequencing. Infected persons in the same household had similar nasopharyngeal viral loads (intraclass correlation coefficient = 0.45; 95% CI, .23-.62). Households with secondary transmission had index cases with a median viral load that was 1.4 log10 higher than those without transmission (P = .03), as well as higher living density (more than 3 persons occupying fewer than 6 rooms; odds ratio, 3.3; 95% CI, 1.02-10.9). Minority households were more likely to experience high living density and had a higher risk of incident infection than did White households (SAR, 51% vs 19%; P = .01). CONCLUSIONS: Household crowding in the context of high-inoculum infections may amplify the spread of COVID-19, potentially contributing to disproportionate impact on communities of color.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Aglomeración , Composición Familiar , Humanos , Estudios Prospectivos , Estados Unidos , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...